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Abstract

In this paper, we consider the radial Schrödinger equation with a real-valued
potential having spherical symmetry, and we present alternative proofs of very
recent results on the necessary, as well as sufficient, conditions on the decrease
of the potential at infinity for the validity of effective range formulae in 3D
in low energy potential scattering (Khuri et al 2008 arXiv:0812.4054v1. See
theorem 1 below. This paper also contains a careful study of the 2D case, with
some amazing new results). Our proofs are based on compact formulae for
the phase shifts. The sufficiency conditions have been well known for a long
time. But the necessity of the same conditions for potentials keeping a constant
sign at large distances are new. All these conditions are established here for
dimension 3 and for all angular momenta � � 0.

PACS number: 03.65.Nk

1. Introduction

We consider potential scattering in three dimensions with a real, local and spherically
symmetric potential V (r) [1–3]. V (r) is assumed to be real, and locally L1. The spherical
symmetry allows us to consider separately each angular momentum state �, and study the
corresponding radial Schrödinger equation. We begin with the S-wave (� = 0) in order to
see clearly the main points without algebraic complications. We therefore have the following
approximation, called the effective range formula, for the S-wave phase shift δ0(k) [1–3]

k cotg δ0(k) ∼=
k small

− 1

a0
+

1

2
r0k

2, (1)

where k, in appropriate units, is the momentum of the particle. This formula was found to be
very useful in the past for low energy scatterings of particles, especially for nucleon–nucleon
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scattering. The conditions for the validity of (1) are not very stringent. In general, for having
a decent scattering theory, and finite phase shifts δ�(k), continuous and bounded for all � � 0,
and all k � 0, one needs only [1–3]

rV (r) ∈ L1(0,∞). (2)

In case it is necessary to have a faster decrease of V (r) at infinity, we usually formulate
it by rαV (r) ∈ L1(1,∞), with some appropriate α. Obviously, if (2) is satisfied, then
rαV (r) is L1 at the origin for all α � 1. We use the notation rαV (r) ∈ L1(1,∞) instead of
rαV (r) ∈ L1(0,∞) in order to emphasize the faster decrease at infinity than given by (2).
Under condition (2), one has then, at most, a finite number n of bound states, and the Levinson
theorem [1–3] ⎧⎨⎩δ0(0) − δ0(∞) = nπ if no resonance at E = k2 = 0 ,

δ0(0) − δ0(∞) = nπ +
π

2
a resonance at E = 0 .

(3)

Usually, one chooses δ0(∞) = 0. In the case of a resonance at E = 0, a0 becomes infinite.
We shall assume (2) throughout this paper.

Whatever the number of bound states n, one has then [3, 4]

(a) for having a finite scattering length a0, it is sufficient to have also

r2V (r) ∈ L1(1,∞); (4)

(b) and for having a finite effective range r0 it is sufficient to have

V (r) ∼
r→∞ r−s , s > 5. (5)

Remark 1. Assuming only (2), the phase shifts δ�(k) are defined only for real values of k, and
without extra conditions on the decrease of the potential at infinity, they cannot be extended
to complex values of k. However, if one assumes also an exponential decrease at infinity:
e2μrV (r) ∈ L1(1,∞), then the S-matrix S�(k) = exp[2iδ�(k)] is meromorphic in |Im k| < μ,
and one can extend (1) in this strip of the k-plane, which may contain the lowest bound states
kj = iγj , γj < μ. This is the case for neutron–proton scattering. We refer the reader to [3]
for more details.

Very recently, the above conditions have been made more precise [11]. Their essential points
can be summarized as follows:

Theorem 1. For the S-wave, with (2) and in the absence of a resonance at E = k2 = 0, if
the potential V (r) keeps a constant sign beyond some finite R, then for having a0 finite, it is
both necessary and sufficient to have also r2V (r) ∈ L1(1,∞). Then, in order to have also r0

finite, it is again necessary and sufficient to have also r4V (r) ∈ L1(1,∞).

One may ask then what happens to the second term in (1) when r4V (r) is not L1 at infinity ?
This also has been studied for V (r) ∼ r−s at infinity [4], and shown by Khuri et al in examples.

Remark 2. If the effective range formula (1) is exact for all k, the corresponding potential is
decreasing exponentially at infinity [5]. It corresponds to a Jost function analytic in the whole
k-plane, with one zero and one pole.

The purpose of the present paper is to give a different proof of theorem 1, and generalize also
to all angular momenta � � 0.
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We end this introduction by quoting the following general theorem, which will be useful
for our proofs:

Theorem 2 (Hille [6]). Consider the differential equation

φ′′
0 (r) − V (r)φ0(r) = 0. (6)

If rV (r) ∈ L1(0,∞), this equation has a unique solution χ0(r) such that

lim
r→∞ χ0(r) = 1, lim

r→∞ χ ′
0(r) = 0. (7)

If V (r) is real, and ultimately keeps a constant sign, the condition on V is both necessary and
sufficient for the existence of such a solution χ0. There is also a solution φ0(r), non-unique
(modulo the addition of αχ0(r)), such that

lim
r→∞

φ0(r)

r
= 1, lim

r→∞ φ′
0(r) = 1. (8)

If V (r) has a faster decrease at infinity, satisfying also the condition r2V (r) ∈ L1(1,∞), then
χ0(r) satisfies

lim
r→∞ r [χ0(r) − 1] = 0, lim

r→∞ r2χ ′
0(r) = 0, (9)

and there exists a unique solution ψ0(r) such that

lim
r→∞[ψ0(r) − r] = 0, lim

r→∞ r[ψ ′
0(r) − 1] = 0. (10)

Again, if V (r) keeps a constant sign, the extra condition r2V (r) ∈ L1(1,∞) is both necessary
as well as sufficient for the existence of such a solution ψ0.

Obviously, φ0 and χ0, or ψ0 and χ0, are two independent solutions of (6) since the
Wronskians at r = ∞, are, according to (7), (8) and (10),

φ′
0χ0 − φ0χ

′
0 = ψ ′

0χ0 − ψ0χ
′
0 = 1. (11)

Remark 3. In general, φ0(0) �= 0, so that, the solution ϕ0(r), with ϕ0(0) = 0, is a linear
combination of the fundamental solutions φ0 and χ0

ϕ0(r) = αφ0(r) + β0χ0(r). (12)

Because of (7), ϕ0 obviously satisfies (8). If we have r2V (r) ∈ L1(1,∞), then ϕ0 = ψ0 +αχ0,
and because of (9), ϕ0 satisfies also (10). The solution ψ0 being unique, the same is true for ϕ0.
Note that ϕ0(r) is given by the solution of the Volterra integral equation (here we normalized
it to ϕ′

0(0) = 1!)

ϕ0(r) = r +
∫ r

0
(r − t)V (t)ϕ0(t) dt, (13)

whereas χ0(r) is the solution of

χ0(r) = 1 +
∫ ∞

r

(t − r)V (t)χ0(t) dt. (14)

In case V (r) is positive, it is obvious on these equations, and on the basis of (2) and (6),
that

(a) ϕ0(r) is an increasing convex function of r. Also ϕ′
0(r) is increasing, and therefore,

ϕ′
0(r) � 1 for all r. Assuming now also r2V (r) ∈ L1(1,∞), one has

ϕ′
0(∞) = A < ∞, A =

∫ ∞

0
rV (r)ϕ0(r) dr, (15)

as seen on (13)
(b) χ0(r) is a positive, convex and decreasing function, with χ0(∞) = 1.
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2. Proof of Theorem 1

The proof is based on the single formula for the phase shift [7]

δ0(k) = −k

∫ ∞

0

ϕ2(k, r)

ϕ′2(k, r) + k2ϕ2(k, r)
V (r) dr, (16)

where one assumes V (r) � 0, ϕ being the reduced radial wavefunction, solution of [1–4]{
ϕ′′(k, r) + k2ϕ(k, r) = V (r)ϕ(k, r),

r ∈ [0,∞), ϕ(k, 0) = 0, ϕ′(k, 0) = 1.
(17)

In some sense, (16) is an absolute definition of the phase shift since, for potentials satisfying
(2), one has, automatically, δ0(∞) = 0. Note that, in (16), the normalization of ϕ is irrelevant.
However, we keep the normalization ϕ′(k, 0) = 1 for convenience. The formula (16) is valid
for all k > 0. One can prove, in fact, the following:

Theorem 3. ([7]). Under the conditions V (r) � 0 and rV (r) ∈ L1(0,∞), the formula (16)
is valid for all k � 0, δ0(k) is a continuous and bounded function, and δ0(∞) = 0. It is also
differentiable for k > 0. In order to have also differentiability at k = 0, with a finite derivative
δ′(0), it is sufficient to add r2V (r) ∈ L1(1,∞). In making k ↓ 0 in (16), the integral diverges,
according to theorem 2 of Hille, if we only have rV (r) ∈ L1(0,∞). However, there is the
factor k in front of it, and the net result is δ0(0) = 0.

Remark 4. If we make k = 0 in (16), the denominator becomes ϕ′2(0, r). If there are bound
states, ϕ(0, r) has, according to the nodal theorem [8], n zeros in (0,∞). Between these
zeros, it has maxima and minima, and so the integral is meaningless. In case of a resonance at
k = 0, one has ϕ(0,∞) = constant, and ϕ′(0,∞) = 0, and so, again, the breakdown of (16).
If V (r) � 0, there are no bound states, and no resonance at E = k2 = 0 [1–3, 5].

Finiteness of a0. Consider now

a0 = lim
k↓0

−δ0(k)

k
≡ − lim

k↓0

δ0(k) − δ0(0)

k
= −δ′(k = 0), (18)

assuming V (r) � 0. Therefore, according to theorem 3 above, (2) and r2V ∈ L1(1,∞) are
sufficient to secure that δ′(0) is finite, that is, a0 is finite. So, in essence, [7] contains already
the proof of the old result that r2V ∈ L1(1,∞) ⇒ a0 finite.

From (16), we also have

a0 =
∫ ∞

0
V (r)

ϕ2
0(r)

ϕ′2
0(r)

dr. (19)

Again, on the basis of theorem 2 of Hille, r2V ∈ L1(1,∞) is also necessary to make a0 finite.
This completes the proof of the first part of theorem 1. Finally, let us remark that, using
ϕ′′

0 = V ϕ0 in (19), and integrating by parts, we find a0 = lim
R→∞

(
R − ϕ0(R)

ϕ′
0(R)

)
also a known

result. Finiteness of r0. We must first compare (1) with (16). From the well-known expansion
of cotg x

cotg x = 1

x
− 2x

(
1

6
+

x2

90
+

x4

945
+ · · ·

)
, (20)

and using (δ0 is an odd function of k [1–3])

δ0(k) = nπ − ka0 + bk3 + · · · , k � 0, (21)
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we find easily

r0 = 2

3
a0 − 2b

a2
0

. (22)

We assume now, of course, that a0 is finite. It follows that the finiteness of r0 and b are
completely equivalent. We can therefore concentrate ourselves on (16). Combining (16) and
(19), we find

b = lim
k↓0

δ0(k) + ka0

k3

= lim
k↓0

1

k2

∫ ∞

0
V (r)

ϕ2(k, r)ϕ′2
0(r) − ϕ2

0(r)ϕ
′2(k, r) − k2ϕ2

0ϕ
2

ϕ′2
0(ϕ

′2 + k2ϕ2)
dr. (23)

Writing now ϕ2ϕ′2
0 − ϕ2

0ϕ
′2 = (ϕϕ′

0 − ϕ0ϕ
′)(ϕϕ′

0 + ϕ0ϕ
′), we get, from (17) and ϕ′′

0 = V ϕ0,
that (ϕϕ′

0 − ϕ0ϕ
′)′ = k2ϕϕ0. Since, at r = 0, ϕ and ϕ0 vanish, and their derivatives are one

(remember (2) !), we find

ϕ(k, r)ϕ′
0(r) − ϕ0(r)ϕ

′(k, r) = k2
∫ r

0
ϕ(k, t)ϕ0(t) dt. (24)

Therefore, taking the limit in (23), we find

b =
∫ ∞

0
V (r)

(
2ϕ0(r)ϕ

′
0(r)

∫ r

0 ϕ2
0(t) dt − ϕ4

0(r)

ϕ′4
0(r)

)
dr. (25)

Now, from the asymptotic behaviour of ϕ0(r) ∼ r , and ϕ′
(r) ∼ 1, for r → ∞, one sees

immediately that the fraction in (25) behaves exactly as − 1
3 r4. It follows that, for V (r) � 0, b

is finite if and only if r4V (r) ∈ L1(0,∞). The same conclusions hold therefore for r0. The
net conclusion is:

Theorem 1′. If V (r) � 0, (2) and r2V (r) ∈ L1(1,∞) are both necessary and sufficient
for having a0 finite. And for having also r0 finite, it is both necessary and sufficient to have
r4V (r) ∈ L1(0,∞). We must now include bound states.

Bound states. We shall choose, as is usually done, δ0(∞) = 0. If there are bound states
of energies −γ 2

j , γj > 0, j = 1, . . . , n, one has the Levinson theorem (3): δ(0) ≡ δ(0) −
δ(∞) = nπ . One can define then

δ̃0(k) = δ0(k) − 2
n∑

j=1

Arctg
γj

k
. (26)

One has now, again, δ̃(∞) = 0, and δ̃(0) = δ(0)−nπ = 0. Using the inverse problem theory
of Gel’fand and Levitan [5], one can calculate the potential Ṽ (r) corresponding to δ̃(k). If we
write

V (r) = Ṽ (r) + �V (r), (27)

it can be shown that the additional potential �V (r) has the following asymptotic behaviour
[5]:

�V (r) =
r→∞ −

n∑
j=1

Cj e−γj ·r , (28)

where Cj are positive constants. �V (r) keeps therefore a negative sign for large values of r,
and is fast decreasing. We assume, of course, that V (r) is not exponentially decreasing for,

5
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otherwise, there would be no problem, and a0 and r0 would be finite. So, for the purpose of
theorem 4, V and Ṽ are equivalent. Since Ṽ has no bound states, or a resonance at E = 0
because of δ̃(0) = 0, the theorem applies to δ̃(k). Now, as it is easily seen by using the known
expansion

Arctg x =
x→∞

π

2
− 1

x
+

1

3x3
+ · · · , (29)

the coefficients of the expansions of δ0(k) and δ̃0(k) for small k, (21), are related to each other
by (remember that, for δ̃(k), n = 0 in (21))⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ã0 = a0 − 2
∑

j

1

γj

,

b̃ = b − 2
∑

j

1

γ 3
j

.

(30)

They differ by finite quantities, and this completes the proof of theorem 1.
If there is a resonance at E = 0, in the first term in the sum in (26) there is no factor 2,

and one has δ(0) = π
2 + (n − 1)π . In this case, as we said before (remark 4), ϕ0(∞) = C,

ϕ′
0(∞) = 0, and so a0 = ∞.

3. Higher �

The validity of the usual scattering theory leading to a continuous and bounded phase shift
δ�(k) is, as we said in the introduction, secured always by rV (r) ∈ L1(0,∞). Under this
condition, the generalization of (16) for � > 0 is [7]

δ�(k) = −k

∫ ∞

0

ϕ2
� (k, r)

[(u′
�ϕ� − u�ϕ

′
�)

2 + (v′
�ϕ� − v�ϕ

′
�)

2]
V (r) dr, (31)

where u�(kr) and v�(kr) are appropriately normalized spherical Bessel and Neumann
functions, and ϕ�(k, r) the solution of the reduced radial Schrödinger equation [1–4]⎧⎪⎪⎨⎪⎪⎩

ϕ′′
� (k, r) + k2ϕ�(k, r) =

[
V (r) +

�(� + 1)

r2

]
ϕ�(k, r),

ϕ�(k, r) =
r→0

r�+1

(2� + 1)!!
+ · · ·

(32)

The effective range formula becomes now [1–3]

k2�+1 cotg δ�(k) = − 1

a�

+
1

2
r�k

2 + · · · (33)

In order to continue further, one needs now the equivalent of theorem 2 in the presence of
the centrifugal potential �(� + 1)/r2. One can prove very easily, by mimicking the proofs of
theorem 2 [6], that one has

Theorem 2′. Consider the equation

φ′′
0 (r) − V (r)φ0(r) = �(� + 1)

r2
φ0(r). (6′)

If rV (r) ∈ L1(0,∞), this equation has a unique solution χ0(r) such that

lim
r→∞ r�χ0(r) = 1, lim

r→∞(r�χ0(r))
′ = 0. (7′)

6
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If V (r) is real, and ultimately keeps a constant sign, the condition on V (r) is both necessary
and sufficient for the existence of χ0(r). There is also a solution φ0(r), non-unique (modulo
the addition of αχ0(r)), such that

lim
r→∞ r−�−1φ0(r) = 1, lim

r→∞(r−�φ0(r))
′ = 1. (8′)

If V (r) satisfies also the condition r2V (r) ∈ L1(0,∞), then r�χ0(r) satisfies

lim
r→∞ r[r�χ0(r) − 1] = 0, lim

r→∞ r2(r�χ0(r))
′ = 0, (9′)

and there exists a unique solution ψ0(r) such that

lim
r→∞[r−�ψ0(r) − r] = 0, lim

r→∞ r[(r−�ψ0(r))
′ − 1] = 0. (10′)

The solutions φ0 and χ0, or ψ0 and χ0, are two independent solutions of (6′), and their
Wronskians are

φ′
0χ0 − φ0χ

′
0 = ψ ′

0χ0 − ψ0χ
′
0 = (2� + 1). (11′)

Again, if V (r) keeps a constant sign beyond some R, the condition r2V (r) ∈ L1(1,∞) is both
necessary and sufficient for the existence of ψ0. In short, one gets theorem 2′ from theorem 2
by replacing χ0 by r�χ0, and φ0 and ψ0 by r−�φ0 and r−�ψ0, and changing the right-hand side
of (11) to (11′). From these formulae (7′)–(10′), one can immediately obtain the asymptotic
properties of χ ′

0, φ
′
0 and ψ ′

0 themselves, to be used in (31).
The proofs are based on the Volterra integral equation for χ0 and φ0 [1, 9]⎧⎪⎪⎪⎨⎪⎪⎪⎩

χ0(r) = r−� −
∫ ∞

r

r�+1r ′−� − r−�r ′�+1

(2� + 1)
V (r ′)χ0(r

′) dr ′,

φ0(r) = r�+1 −
∫ ∞

r

r�+1r ′−� − r−�r ′�+1

(2� + 1)
V (r ′)φ0(r

′) dr ′,

(34)

by iterating them, starting from the zero order solutions r−� and r�+1, respectively, and
mimicking exactly the proof of theorem 2 of [6]. We leave the details to the reader. It is quite
standard.

One can then continue the analysis, as was done for the S-wave, and one finds:

Theorem 4. In the absence of a bound state at E = 0, if the potential satisfies (2) and keeps a
constant sign for r > R, then: (a) for having a finite a�, it is necessary and sufficient to have
r2�+2V (r) ∈ L1(1,∞) ; (b) the effective range r� is finite if and only if r2�+4V (r) ∈ L1(1,∞).
In case there is a bound state at zero energy (for � � 1, it is a real bound state at E = 0,
with an L2 wavefunction, instead of being a resonance. It contributes by π to the Levinson
theorem), the scattering length a� is infinite [1–3], as in the case of a resonance when � = 0.
This is obvious on (30), when making γ1 ↓ 0.
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